Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

N-[4-(Morpholinodiazenyl)phenyl]acetamide

Taylor Chin, ${ }^{\text {a }}$ Frank R. Fronczek ${ }^{\text {b }}$ and Ralph Isovitsch ${ }^{\text {a }}$.

${ }^{\text {a }}$ Department of Chemistry, Whittier College, 13406 Philadelphia Street, Whittier, CA 90608, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
Correspondence e-mail: risovits@whittier.edu
Received 11 November 2009; accepted 18 November 2009
Key indicators: single-crystal X-ray study; $T=90 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA ; R$ factor = $0.038 ; w R$ factor $=0.095$; data-to-parameter ratio $=13.4$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$, is a member of a family of morpholine-substituted aromatic diazenes. Conjugation of the diazene group π-system and the lone pair of electrons of the morpholine N atom is evidenced by a lengthened $\mathrm{N}=\mathrm{N}$ double bond of 1.2707 (19) \AA and a shortened $\mathrm{N}-\mathrm{N}$ single bond of 1.346 (2) \AA. The bond angles at the morpholine N atom range from 113.52 (14) to $121.12(14)^{\circ}$, indicating some degree of $s p^{2}$ hybridization. The morpholine ring adopts a conventional chair conformation with the diazenyl group in the equatorial position. The diazenyl and acetamido groups are both twisted relative to the plane of the benzene ring by 12.3 (2) and 25.5 (3) ${ }^{\circ}$, respectively.

Related literature

The title compound was synthesized using a modification of the method of Sengupta et al. (1998). For similar structures, see: Little et al. (2008). For information about diazene derivatives, see: Chen et al. (2005); Lalezari \& Afgahi (1975). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=248.29$
Monoclinic, $P 2_{1} / c$
$V=1240.29(6) \AA^{3}$
$Z=4$
$\mathrm{Cu} \mathrm{K} \alpha$ radiation
$a=12.6013$ (4) A
$\mu=0.77 \mathrm{~mm}^{-1}$
$b=10.6114$ (3) \AA
$T=90 \mathrm{~K}$
$0.23 \times 0.17 \times 0.01 \mathrm{~mm}$
$\beta=93.874(2)^{\circ}$

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.843, T_{\text {max }}=0.992$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.095$
$S=1.03$
2249 reflections
168 parameters

11437 measured reflections 2249 independent reflections 1655 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.053$

$$
\begin{aligned}
& \mathrm{H} \text { atoms treated by a mixture of } \\
& \text { independent and constrained } \\
& \text { refinement } \\
& \Delta \rho_{\max }=0.20 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \text { e }^{-3}
\end{aligned}
$$

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

RI acknowledges Whittier College for the faculty research grant that funded this research. TC thanks Whittier College for summer support. Mr Jonathan Attard is thanked for an initial trial synthesis of the title compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2239).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. \& Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, B., Flatt, A. K., Jian, H., Hudson, J. L. \& Tour, J. M. (2005). Chem. Mater. 17, 4832-4836.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lalezari, I. \& Afgahi, F. (1975). J. Pharm. Sci. 64, 698-699.
Little, V. R., Jenkins, H. \& Vaughan, K. (2008). J. Chem. Crystallogr. 38, 447452.

Sengupta, S., Bhattacharyya, S. \& Sadhukhan, S. K. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 275-277.
Sheldrick, G. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o3206 [doi:10.1107/S160053680904937X]

N-[4-(Morpholinodiazenyl)phenyl]acetamide

T. Chin, F. R. Fronczek and R. Isovitsch

Comment

Diazene derivatives have found utility in various research areas (Lalezari \& Afgahi, 1975; Chen et al., 2005). Our research uses morpholine-substituted aryl diazenes as easily handled and prepared equivalents for the in situ generation of diazonium ions that are then used in the synthesis of novel derivatives of trans-stilbene via a Heck-type reaction (Sengupta et al., 1998).

The structure of the title compound is shown in Figure 1. The $\mathrm{N}-\mathrm{N}$ double bond adopted a trans-configuration. A $\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1$ bond angle of $113.93(14)^{\circ}$ deviates from the optimal trigonal planar geometry by approximately 6°. The diazene moiety, N3-N2-N1, exhibits π-delocalization, evidenced by N1-N2 and N2-N3 bond lengths of 1.346 (2) and 1.2707 (19) \AA respectively. These values are between literature value of $1.222 \AA$ for a $\mathrm{N}-\mathrm{N}$ double bond and $1.420 \AA$ for a $\mathrm{N}\left(s p^{2}\right)-\mathrm{N}\left(s p^{3}\right)$ single bond (Allen et al., 1987) Morpholine nitrogen bond angles that ranged from 113.52 (14)-121.12 (14) ${ }^{\circ}$ indicated that the morpholine nitrogen had some degree of $s p^{2}$ hybridization and participated in π-delocalization. The morpholine ring adopted a conventional chair conformation, with the diazenyl group in the equitorial postion on the morpholine nitrogen, N3. The acetamino and diazene groups were found to be twisted $25.5(3)^{\circ}$ and $12.3(2)^{\circ}$ respectively from the plane of the phenyl ring. The structure of the title compound is similar to the structure of related diazenes (Little et al., 2008).

Experimental

Synthetic procedures were carried out using standard techniques. Solvents and reagents were used as received. Melting points were determined in open capillaries and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Jeol ECX 300 MHz spectrometer using TMS as the internal standard. The IR spectrum was recorded as a KBr disk on a JASCO 460 F T-IR.
4.26 g of N -(4-aminophenyl)acetamide (28.4 mmol) was added to 12.5 ml of 6 MHCl in an ice water bath and cooled to $0^{\circ} \mathrm{C}$ to yield a light pink precipitate. The solid was maintained at $0^{\circ} \mathrm{C}$, and a solution of $2.08 \mathrm{~g}(30.09 \mathrm{mmol})$ of NaNO_{2} in $4.0 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ was added dropwise with stirring over ten minutes; a dark green brown solution resulted. After stirring for twenty minutes, 2.70 ml morpholine $(2.74 \mathrm{~g}, 31.42 \mathrm{mmol})$ was added dropwise in 10 minutes. Then saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added until pH of 8 was reached, and solution was stirred for ten minutes: a yellow brown suspension resulted. The tan solid was collected using vacuum filtration, washed well with water and dried in air. The crude product was recrystallized from a 1:3 benzene:cyclohexane mixture to give $3.55 \mathrm{~g}(50.4 \%)$ of $4-[(E)$-(acetamidophenyl)diazenyl]-morpholine as a \tan microcrystalline solid.
m.p. 448-449 K. IR (KBr) 3294, 3055, 2971, 1664, $1600 \mathrm{~cm}^{-1.1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $2.03(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~m}$, $4 \mathrm{H}), 3.77(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d 6$): 24.54,48.33,66.05,119.89$, $121.27,138.28,145.50,168.75$ p.p.m.. $R_{\mathrm{f}}=0.61$ (ethyl acetate)

supplementary materials

Refinement

H atoms on C were placed in idealized positions with $\mathrm{C}-\mathrm{H}$ distances $0.95-0.99 \AA$ and thereafter treated as riding. A torsional parameter was refined for the methyl group. The $\mathrm{N}-\mathrm{H}$ hydrogen atom was placed from a difference map, and its coordinates were refined. $U_{\text {iso }}$ for H were assigned as 1.2 times U_{eq} of the attached atoms (1.5 for methyl).

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level. H atoms are shown with arbitrary radius.

N-[4-(Morpholinodiazenyl)phenyl]acetamide

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$
$F(000)=528$
$M_{r}=248.29$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=12.6013$ (4) \AA
$b=10.6114$ (3) \AA
$c=9.2967(2) \AA$
$\beta=93.874$ (2) ${ }^{\circ}$
$V=1240.29(6) \AA^{3}$

$$
D_{\mathrm{x}}=1.330 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 1544 reflections

$$
\theta=3.5-67.6^{\circ}
$$

$\mu=0.77 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Plate, colorless
$0.23 \times 0.17 \times 0.01 \mathrm{~mm}$

$Z=4$

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.843, T_{\text {max }}=0.992$
11437 measured reflections

2249 independent reflections
1655 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=68.8^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-15 \rightarrow 14$
$k=-12 \rightarrow 12$
$l=-7 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.095$
$S=1.03$
2249 reflections
168 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0421 P)^{2}+0.3 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.20$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0012 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.58539(10)$	$0.71775(12)$	$0.68342(13)$	$0.0281(3)$
O2	$0.91392(10)$	$-0.19398(12)$	$0.26306(12)$	$0.0260(3)$

N1	$0.63437(11)$	$0.46590(13)$	$0.62337(14)$	$0.0203(3)$
N2	$0.66849(11)$	$0.34581(13)$	$0.61964(14)$	$0.0198(3)$
N3	$0.73809(11)$	$0.32649(13)$	$0.52939(14)$	$0.0204(3)$
N4	$0.88774(11)$	$-0.17257(13)$	$0.50181(15)$	$0.0179(3)$
H4N	$0.8936(14)$	$-0.2115(18)$	$0.5884(18)$	0.021^{*}
C1	$0.52108(14)$	$0.61813(17)$	$0.73287(19)$	$0.0249(4)$
H1A	0.4609	0.6025	0.6610	0.030^{*}
H1B	0.4914	0.6434	0.8244	0.030^{*}
C2	$0.58485(14)$	$0.49823(17)$	$0.75637(18)$	$0.024^{*}(4)$
H2A	0.6404	0.5104	0.8357	0.027^{*}
H2B	0.5376	0.4289	0.7836	0.027^{*}
C3	$0.69258(14)$	$0.56752(16)$	$0.55717(18)$	$0.0218(4)$
H3A	0.7116	0.5419	0.4598	0.026^{*}
H3B	0.7591	0.5859	0.6163	0.026^{*}
C4	$0.62278(15)$	$0.68384(17)$	$0.54677(19)$	$0.0258(4)$
H4A	0.6637	0.7550	0.5095	0.031^{*}
H4B	0.5611	0.6679	0.4775	0.031^{*}
C5	$0.77020(13)$	$0.19715(16)$	$0.52560(17)$	$0.0181(4)$
C6	$0.74615(13)$	$0.10620(16)$	$0.62701(17)$	$0.0199(4)$
H6	0.7041	0.1279	0.7044	0.024^{*}
C7	$0.78367(13)$	$-0.01525(16)$	$0.61454(17)$	$0.0192(4)$
H7	0.7660	-0.0773	0.6826	0.023^{*}
C8	$0.84737(13)$	$-0.04798(16)$	$0.50304(16)$	$0.0169(4)$
C9	$0.87227(14)$	$0.04281(16)$	$0.40320(17)$	$0.0188(4)$
H9	0.9155	0.0216	0.3270	0.023^{*}
C10	$0.83377(13)$	$0.16458(16)$	$0.41515(17)$	$0.0186(4)$
H10	0.8512	0.2265	0.3468	0.022^{*}
C11	$0.92053(13)$	$-0.23624(16)$	$0.38778(17)$	$0.0189(4)$
C12	$0.96655(14)$	$-0.36422(16)$	$0.42131(18)$	$0.0217(4)$
H12A	0.9306	-0.4270	0.3579	0.033^{*}
H12B	0.9564	-0.3855	0.5220	0.033^{*}
H12C	1.0427	-0.3637	0.4058	0.033^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0306(7)$	$0.0194(7)$	$0.0348(7)$	$-0.0004(6)$	$0.0055(6)$	$-0.0053(6)$
O2	$0.0442(8)$	$0.0191(7)$	$0.0147(6)$	$0.0039(6)$	$0.0025(5)$	$-0.0009(5)$
N 1	$0.0226(7)$	$0.0150(7)$	$0.0236(7)$	$0.0021(6)$	$0.0038(6)$	$-0.0025(6)$
N 2	$0.0215(7)$	$0.0184(8)$	$0.0195(7)$	$0.0007(6)$	$0.0002(6)$	$-0.0021(6)$
N 3	$0.0221(7)$	$0.0192(8)$	$0.0199(7)$	$0.0012(6)$	$0.0009(6)$	$-0.0028(6)$
N 4	$0.0243(8)$	$0.0160(7)$	$0.0136(7)$	$0.0016(6)$	$0.0025(6)$	$0.0012(6)$
C1	$0.0229(9)$	$0.0227(10)$	$0.0293(9)$	$0.0014(8)$	$0.0027(8)$	$-0.0037(8)$
C 2	$0.0232(9)$	$0.0229(10)$	$0.0215(9)$	$0.0006(7)$	$0.0040(7)$	$-0.0033(8)$
C 3	$0.0244(9)$	$0.0168(9)$	$0.0247(9)$	$-0.0009(8)$	$0.0042(8)$	$-0.0008(7)$
C4	$0.0296(10)$	$0.0185(9)$	$0.0294(10)$	$-0.0005(8)$	$0.0023(8)$	$-0.0016(8)$
C5	$0.0173(8)$	$0.0173(9)$	$0.0190(8)$	$0.0002(7)$	$-0.0025(7)$	$-0.0032(7)$
C6	$0.0197(9)$	$0.0225(10)$	$0.0179(8)$	$-0.0005(7)$	$0.0029(7)$	$-0.0027(7)$

sup-4

supplementary materials

C7	$0.0218(9)$	$0.0198(9)$	$0.0162(8)$	$-0.0010(7)$	$0.0016(7)$	$0.0010(7)$
C8	$0.0185(8)$	$0.0169(9)$	$0.0148(8)$	$-0.0001(7)$	$-0.0018(7)$	$-0.0022(7)$
C9	$0.0214(8)$	$0.0198(9)$	$0.0152(8)$	$0.0001(7)$	$0.0018(7)$	$-0.0013(7)$
C10	$0.0220(8)$	$0.0180(9)$	$0.0157(8)$	$-0.0021(7)$	$0.0001(7)$	$0.0023(7)$
C11	$0.0207(9)$	$0.0180(9)$	$0.0179(9)$	$-0.0009(7)$	$0.0010(7)$	$-0.0009(7)$
C12	$0.0277(9)$	$0.0182(9)$	$0.0194(8)$	$0.0023(8)$	$0.0030(7)$	$-0.0020(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C1	1.427 (2)
O1-C4	1.430 (2)
O2-C11	1.2407 (19)
N1-N2	1.346 (2)
N1-C2	1.463 (2)
N1-C3	1.463 (2)
N2-N3	1.2707 (19)
N3-C5	1.432 (2)
N4-C11	1.345 (2)
N4-C8	1.417 (2)
N4-H4N	0.903 (17)
C1-C2	1.513 (2)
C1-H1A	0.9900
C1-H1B	0.9900
C2-H2A	0.9900
C2-H2B	0.9900
$\mathrm{C} 3-\mathrm{C} 4$	1.515 (2)
C3-H3A	0.9900
C1-O1-C4	109.15 (13)
N2-N1-C2	113.52 (14)
N2-N1-C3	121.12 (14)
C2-N1-C3	115.93 (14)
N3-N2-N1	113.93 (14)
N2-N3-C5	112.31 (14)
C11-N4-C8	127.19 (14)
C11-N4-H4N	117.5 (12)
C8-N4-H4N	115.3 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	111.22 (14)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.4
C2- $21-\mathrm{H} 1 \mathrm{~B}$	109.4
H1A-C1-H1B	108.0
N1-C2-C1	109.14 (14)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.9
N1-C2-H2B	109.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.9
H2A-C2-H2B	108.3
N1-C3-C4	108.78 (14)

C3-H3B	0.9900
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
C4-H4B	0.9900
C5-C10	1.388 (2)
C5-C6	1.397 (2)
C6-C7	1.380 (2)
C6-H6	0.9500
C7-C8	1.397 (2)
C7-H7	0.9500
C8-C9	1.388 (2)
C9- Cl^{0}	1.387 (2)
C9-H9	0.9500
C10-H10	0.9500
C11-C12	1.501 (2)
C12-H12A	0.9800
C12-H12B	0.9800
C12-H12C	0.9800
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.2
C3-C4-H4B	109.2
H4A-C4-H4B	107.9
C10-C5-C6	119.32 (16)
C10-C5-N3	115.78 (15)
C6-C5-N3	124.83 (14)
C7-C6-C5	119.82 (15)
C7-C6-H6	120.1
C5-C6-H6	120.1
C6-C7-C8	120.77 (16)
C6-C7-H7	119.6
C8-C7-H7	119.6
C9-C8-C7	119.38 (16)
C9-C8-N4	123.00 (15)
C7-C8-N4	117.55 (14)
C10-C9-C8	119.79 (15)
C10-C9-H9	120.1
C8-C9-H9	120.1
C9-C10-C5	120.90 (16)
C9-C10-H10	119.5
C5-C10-H10	119.5
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{N} 4$	123.37 (15)

supplementary materials

$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.9
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.9
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.3
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$111.89(14)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.2
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.2
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	$-159.87(14)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	$-14.8(2)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 5$	$-178.35(13)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$62.57(18)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-163.16(14)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$49.87(19)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-55.31(19)$
N2-N1-C3-C4	$166.58(14)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$-49.15(19)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$-62.36(19)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$54.28(19)$
N2-N3-C5-C10	$170.70(14)$
N2-N3-C5-C6	$-12.3(2)$
C10-C5-C6-C7	$-1.4(2)$

$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12$	$121.44(15)$
$\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 12$	$115.19(14)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.5
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{~N} 3-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-178.36(16)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$1.3(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.5(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 4$	$176.59(16)$
$\mathrm{C} 11-\mathrm{N} 4-\mathrm{C} 8-\mathrm{C} 9$	$-25.5(3)$
$\mathrm{C} 11-\mathrm{N} 4-\mathrm{C} 8-\mathrm{C} 7$	$157.45(16)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$0.0(2)$
$\mathrm{N} 4-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-176.97(16)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$-0.2(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$0.9(2)$
$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$178.10(15)$
$\mathrm{C} 8-\mathrm{N} 4-\mathrm{C} 11-\mathrm{O} 2$	$-4.0(3)$
$\mathrm{C} 8-\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 12$	$175.96(16)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \mathrm{~N} \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.903(17)$	$1.911(18)$	$2.8115(18)$	$174.5(17)$

Symmetry codes: (i) $x,-y-1 / 2, z+1 / 2$.

Fig. 1

